High Density Computing BIG DATA NO COMPROMISE

Traditional Approaches

- Scale Out Servers (Cloud / Blade Servers)
 - Chip Set x86-based
 - OS Standard Linux Distribution (RHEL or SUSE)
 - Scale 4 Sockets (40-48 Core) and 1.5 TB RAM
 - Boundary At the blade level
 - Interconnect Network

Traditional Approaches Scale Out

Standards Based But....

Traditional Approaches Scale Out

Standards Based But.... Network is Integral to System

Traditional Approaches

- Scale Up Servers (Derived from Unix Platforms)
 - Chip Set Proprietary
 - OS Proprietary (Unix)
 - Other OS options may be provided
 - Boundary At the system level
 - Computer Backplane

Traditional Approaches Scale Up

The Boundary is at the System Level But...

Traditional Approaches Scale Up

The Boundary is at the System Level But...

<u>The System is Proprietary</u>

Traditional Approaches

- Scale Out Servers (Cloud / Blade Servers)
 - Chip Set x86-based
 - OS Standard Linux Distribution (RHEL or SUSE)
 - Scale 4 Sockets (40-48 Core) and 1.5 TB RAM
 - Boundary At the blade level
 - Interconnect Network
- Scale Up Servers (Derived from Unix Platforms)
 - Chip Set Proprietary
 - OS Proprietary (Unix)
 - Other OS options may be provided
 - Scale 4096 Core and 64TB RAM
 - Boundary At the system level
 - Computer Backplane

Traditional Approaches Scale Out Standards Based But....Network Is Integral to the Processing Environment

Traditional Approaches Scale Up Network is External to the Processing Environment But... System is Proprietary

High Density Computing

- High Density Computing
 - Chip Set x86-based
 - OS Standard Linux Distribution (RHEL or SUSE)
 - Scale 4096 Core and 64TB RAM
 - Boundary At the system level
 - Computer Backplane

The ABC's of High Density Computing

Affinity

The ability to locate resources in close proximity

Boundaries

 A fixed border that requires data and applications to transmit from the compute to the networking / IO domains

Connectivity

- The topology used to connect compute resources
 - Tightly Coupled uses high speed computer backplane technology
 - Loosely Coupled uses networking topologies

Domains

- Architectural sections of the overall system
 - Compute Domain
 - Communication / IO Domain

High Density Computing

High Density Computing

- There is Choice in "Big Data" Compute Platforms
 - Traditional Approaches
 - High Density Systems
- Applications can Exceed Traditional Approaches
 - If you have one of these come speak with us
- FedCentric Technologies solves difficult problems with High Density Platforms
 - Big Data No Compromise
 - Talk with us about the USPS use case

Memory Centric DataBase (MCDB) Toolkit

MCDB

- Uses Existing Oracle Code
- Provides an order(s) of magnitude increase in performance
- USPS Use Case
 - Went from 2500 to 3.5 million inserts per second ingest rate.
 - Processes 24 hours of data in < 2 hours
 - Enabled Revenue Protection on the entire mail stream
 - Provides <200 msec response times to all queries

High Density Computing Commodity-based Hardware 64TBRAM **Data Moves At Computer Speeds** Standard Operating Systems In Memory Capable SQL Objects Volume **Disruptive Technology** Velocity **Structured** scaleOut **Architectural Flexibility** No Boundaries at the Blade Level Nosal Orders Of Magnitude Application Speedup 4096 Core Application compatibility With Existing Systems

Experience Leadership Results

