INFECTIOUS DISEASE EPIDEMIOLOGY APPLIANCE (IDEA)

Terry Antony¹, Lucia Fernandez¹, Kyle Milligan¹, Rui Ponte¹, Meena Sengottuvelu¹, Tianwen Chu², Frank D'Ippolito², Michael S, Atkins² ¹University of Maryland, College Park, MD; ²FedCentric Technologies, LLC., College Park, MD

Introduction

The flavivirus genus consists of 73 mosquito and tick borne viruses that pose a considerable threat to public health. A deeper understanding of the molecular evolution of flaviviruses is needed to guide public health decisions and to prevent flavivirus epidemics, such as the 2015-2016 Zika virus epidemic in the Americas. Comparative genomic analysis can lead to many discoveries regarding molecular evolution and epidemiology, but computational power remains a limiting factor due to the size of the data and the complexity of the algorithms. Here we present the Infectious Disease Epidemiology Appliance or IDEA, a tool currently in development at FedCentric Technologies for the rapid analysis and visualization of over 6,200 genomic and 93,000 proteomic flavivirus sequences. The long term goal with IDEA is to create a robust epidemiological tool than can be used to quickly identify, monitor, and contain any infectious disease outbreak wherever it occurs, from nosocomial infections in a local hospital to remote hot zones anywhere in the world.

Methods

Hardware

- FedCentric Labs SGI UV2000 system
- x86/Linux Operating System
- Scales up to 4092 cores
- Scales up to 64TB RAM (all data in memory)
- Very low latency, high performance

Figure 1: Scale-Up vs. Scale-Out Architecture

· An RStudio package used for web application development

Methods (continued)

Data

• Whole genome and protein sequences from the NIAID Virus Pathogen Database and Analysis Resource (ViPR)

Graph Model

- The graph consists of virus sample nodes linked together with distance calculation edges
- Each sample has 14 protein sequences, 1 polyprotein sequence, and 1 nucleotide sequence
- 6,201 nodes and 307,569,600 edges

User Interface

- · Edit distance comparison between protein and nucleotide sequences
- · Phylogenetic tree builder with maximum likelihood
- Multiple Sequence Alignment using MAFFT (Multiple Alignment using Fast Fourier Transform)
- Choropleth map view

Results

Sequence Comparison

- · All-to-All comparison of protein and nucleotide sequences
- Distance value is calculated with edit distance corrected with Jukes-Cantor

name	accession	aubtype) collection_date ()	country i	host 0
Zka_virus	RX198134	NA	1984_11_17	Senegal	Mosquite
Zika_virus	R06446050	NA.	2016_01_01	Maxico	Mosquite
Zika_virus	KU055595	NA	1984_12_14	Senegal	Mosquito
Zha_virus	¥3,/955592	NA.	1904_12_06	Senegal	Mosquite
Zka_vrus	KJF258048	NA.	1976	Central_Atrican_Republic	Mosquite
Zika_virus	K31258950	NA	NA	Central_Atrican_Republic	Mosquite
Zika_virus	R06446951	NA.	2016_01_01	Maxico	Masquite
Zika_virus	K0(377336	NA.	1966_07	Malaysia	Mosquite
Zika_virus	¥3,/955591	NA.	1984_11_20	Senegal	Mosquite
Ziba	accession	aubtype	collection data	essentry	Mossuito

Table 1: Searchable database allows easy strain lookup and querying

	i subtype	collection_date	eounity	Search:
accession				i host i
HG316481	NA	2010	Thaland	Unknown
HG316482	NA	2010	Thaland	Unknown
HG316484	NA	2010	Thailand	Unknown
HG316483	NA	2010	Thaland	Unknown
accession	subtype	2010	Thailand	host
	accession HG316481 HG316482 HG316484 HG316483 accession	accession subtype H0316481 NA H0315642 NA H0315643 NA H0316643 NA b0205643 NA	accession i watype collection_data HG319481 NA 2010 HG319482 NA 2010 HG319484 NA 2010 HG319483 NA 2010 HG319484 NA 2010 HG319485 NA 2010 HG319485 NA 2010	I scenario valtype I cohelice,date I cohelice,date I cohelice,date HG15441 NA 200 Tabled HG15442 NA 200 Tabled HG15444 NA 200 Tabled HG15442 NA 200 Tabled HG15443 NA 200 Tabled HG15440 NA 200 Tabled HG15445 NA 200 Tabled

Table 2: Researchers can search data with multiple filters at the same time

Choropleth Map View

- Displays the density of samples of each country
- Provides the user with a timeline slider to view the spread over time

Figure 2: Map visualization tool allows users to track the spread of a pathogen

Results (continued)

Phylogenetic Trees:

- · Trees constructed using the Maximum Likelihood Algorithm
- Maximum Likelihood uses statistical techniques to infer a probability distribution for the given data
- The likelihood of the tree is proportional to the probability of the tree given by the distribution
- · Generalised Time Reversible was used as the substitution model

Figure 3: Dendrogram of Zika Virus genomes

- The final trees were validated using Bootstrapping, which is a resampling method
- Intuitive way to visualize the evolution of an organism over time
- Two genomic sequences at similar locations in the tree are expected to have evolved from the same common ancestor

Conclusions

IDEA will be an invaluable tool to virologists, epidemiologists, and public health officials. The ability to accurately determine the origin of a pathogenic strain will allow for preventative interventions and quarantines when they are needed most. This technology can be rapidly expanded to other pathogenic organisms as well, such as Ebola, HIV, malaria, influenza, and bacterial infections. An application like this paired with an assembler and a sequencer will allow researchers to quickly identify and track strains of pathogens permitting better intelligence for interventions and guarantines to stop and contain outbreaks.

References

Daep, C. A., Munoz-Jordan, J. L., & Eugenin, E. A. (2014). Flaviruses an expanding threat in public health: focus on Dengue, West Nile, and Japanese encephalitis virus, J. 539-560. Felsenstein, J. (1985). Confidence Limits on Phylogenies: An Approach Using the Bootstrap Evolution. 39: 783.doi:10.2307/2408678. ISSN 0014-3820

Galtier, N. & Guoy, M. (1998). Inferring pattern and process: maximum-likelih implementation of a nonhomogeneous model of DNA sequence evolution for p analysis. Mol. Biol. Evol. 15:871–79.

Hougland, J. (2015). How-to: Prepare Your Apache Hadoop Cluster for PySpark. http:// blog.cloudera.com/blog/2015/09/how-to-prepare-your-apache-hadoop-cluster-for-pyspa

Acknowledgements

The results published here are in whole or in part based upon data enerated by the Virus Pathogen Database and Analysis Resource (ViPR) maintained by the National Institute of Allergy and Infectious Diseases (NIAID).

